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Applications of Magnetometers

• Magnetic field sensors are used for navigation, tracking, mineral
exploration, current sensing, magnetocardiography and other
applications

Navigation in GPS Denied Environments
www.hoveringsolutions.com

Tracking of Moving Metallic or Magnetic Object
blog.nxp.com

Drone

Tunnel
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Magnetometers Comparison

More Sensitive
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• Sub-nT magnetic sensitivity
• Ambient conditions

• Vector field measurements
• Large dynamic range

Magnetometers Comparison

Nitrogen Vacancy (NV) 
Center in Diamond

More Compact
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NV Centers in Diamond for Quantum Sensing

Bacteria Magnetic Imaging
D. Le Sage, et al., Nature 2013

Nuclear Magnetic Resonance Spectroscopy
T. Staudacher, et al., Science 2013

Thermometry in a Living Cell
G. Kucsko, et al., Nature 2013
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Hybrid CMOS-Diamond Quantum Systems 

High Precision 
Sensors

High Resolution 
Imagers

Scalable Information 
Processing SystemsBacteria Magnetic Imaging

D. Le Sage, et al., Nature 2013
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Outline

• Introduction
• Magnetometry Principle Using NV Centers in Diamond
• Scalable CMOS-Diamond Hybrid Magnetometer

– Uniform Microwave Array Design
– Talbot Effect-Based Optical Filter
– Complete System Integration

• Measurement Results and Real-Time Demo
• Conclusions
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NV Centers in Diamond Magnetometer

• Optically detected magnetic resonance (ODMR)
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NV Centers in Diamond Magnetometer

• Optically detected magnetic resonance (ODMR)
• External magnetic field is measured using

Zeeman splitting	(γe	= 28GHz/T)

Bz1
Bext
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NV Centers in Diamond Magnetometer

• Optically detected magnetic resonance (ODMR)
• External magnetic field is measured using

Zeeman splitting	(γe	= 28GHz/T)
• Bz1, Bz2, Bz3, Bz4 are the projections of Bext

along the NV axes

Bz1
Bext
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• ~2.87GHz strong homogenous microwave
field for spin manipulation

– Increases the contrast
– Drives the NVs with equal strength to decrease

linewidth broadening
• Photo-detection for red fluorescence (IRed)

– Increases with the number of NV centers

Integrated CMOS-Diamond Quantum Magnetometer 
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• Green light is not absorbed completely
by the diamond

– Decreases the contrast
– Increases the shot noise

Integrated CMOS-Diamond Quantum Magnetometer 

૛࢔ࡵ 	= 	૛ࢗ 	ࢊࢋࡾࡵ + ࢔ࢋࢋ࢘ࡳࡵ ૛ࢌࢤ	
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• Green light is not absorbed completely
by the diamond

– Decreases the contrast
– Increases the shot noise

• Optical filtering for green light is needed

Integrated CMOS-Diamond Quantum Magnetometer 

૛࢔ࡵ 	= 	૛ࢗ 	ࢊࢋࡾࡵ + ࢔ࢋࢋ࢘ࡳࡵ ૛ࢌࢤ	
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CMOS-Diamond Magnetometer Design Constraints   

• The sensitivity (η) is the minimum detectable magnetic field (T/ Hz)
• η	∝  1/SNR

Limited by photodiode shot 
noise from the green laser

Limited by photodiode shot 
noise from the red fluorescence
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CMOS-Diamond Magnetometer Design Constraints

• The sensitivity (η) is the minimum detectable magnetic field (T/ Hz)
• η	∝  1/SNR

Scalable design is required
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Outline

• Introduction
• Magnetometry Principle Using NV Centers in Diamond
• Scalable CMOS-Diamond Hybrid Magnetometer

– Uniform Microwave Array Design
– Talbot Effect-Based Optical Filter
– Complete System Integration

• Measurement Results and Real-Time Demo
• Conclusions
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• A scalable structure with homogeneous
field profile generation is required

• Previously straight wires and loops are
commonly used

– Microwave field homogeneity is achieved
within only a small area

– Scaling up for larger areas is hard

Microwave Coupling Structure

ࢋ࢘࢏࢝࡮ = ࢘࣊૛ࡵ૙ࣆ
ࡵ
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• The total magnetic field component at
y direction from the sheet is:

where ࢙ࡶ is the current density across the
sheet

Uniform Sheet of Current

RF Current Redistribution in a Single Flat Conductor

࢟࡮ = ૛࢙ࡶ૙ࣆ
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• Regulation and arbitrary control of local 
currents using transistors 

• Highly-scalable, CMOS-enabled structure
– This design can be extended to larger areas

Uniform Sheet of Current

RF Current Redistribution in a Single Flat Conductor
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• The magnetic field at location (0,y,z) of each
conductor located at (0,yn,0) is:

where ࢊ is the array pitch size
• The total magnetic field component at y

direction from all the conductors is:

Scalable Microwave Array

࢔࡮ = ࢘࣊૛࢔ࡵ૙ࣆ = ࣊૛࢔ࡵ૙ࣆ ࢟ − ࢔࢟ ૛ + ૛ࢠ 	; ࢔࢟ = ࢊ࢔

࢟࡮ =෍ࡺ࢔࢟࡮૛
૛ࡺି =෍ࣆ૙࢔ࡵ૛࣊ ࢟ࢠ − ࢔࢟ ૛ + ૛ࡺ૛ࢠ

૛ࡺି
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• The total magnetic field component in z
direction from all the conductors is:

where ࢔࢟ = ࢊ࢔ and ࢊ is the array pitch size

Scalable Microwave Array

ࢠ࡮ =෍࢔ࢠ࡮
૛ࡺ
૛ࡺି =෍ࣆ૙࢔ࡵ૛࣊ ࢟ − ࢟࢔࢟ − ࢔࢟ ૛ + ૛ࡺ૛ࢠ

≈૛ࡺି ࣊૝࢔ࡵ૙ࣆ ln ࢟ − ૛ࡺ ࢊ ૛ + ૛ࢠ − ln ࢟ + ૛ࡺ ࢊ ૛ + ૛ࢠ
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Scalable Microwave Array
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Scalable Microwave Array
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• The total magnetic field component in z
direction from all the conductors is:

– ࢔ࡽ = ࢔࢟ି࢟࢔࢟ି࢟ ૛ାࢠ૛
– ࢔࢟ = ܌ܖ and ܌ is the array pitch size
– ࢒ is the number of boundary conductors
– ࢼ is the ratio between the boundary and

the core conductors currents

Microwave Array with Uniform Magnetic Field 

ࢠ࡮ = ෍ ૛ି૚ࡺି࢔ࡽࢼ
࢒૛ିࡺି +෍࢔ࡽ

૛ࡺ
૛ࡺି + ෍ ࢔ࡽࢼ

࢒૛ାࡺ
≈૛ା૚ࡺ ࣊૝࢔ࡵ૙ࣆ ቈ ૚ − ࢼ ln ࢟ − ૛ࡺ ࢊ ૛ + ૛ࢠ − ln ࢟ + ૛ࡺ ࢊ ૛ + ૛ࢠ

+ ࢼ ln ࢟ − ૛ࡺ + ࢒ ࢊ ૛ + ૛ࢠ − ln ࢟ + ૛ࡺ + ࢒ ࢊ ૛ + ૛ࢠ ቉
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Large boundary current to 
compensate for the vertical field

• The total magnetic field component in z
direction from all the conductors is:

– ࢔ࡽ = ࢔࢟ି࢟࢔࢟ି࢟ ૛ାࢠ૛
– ࢔࢟ = ܌ܖ and ܌ is the array pitch size
– ࢒ is the number of boundary conductors
– ࢼ is the ratio between the boundary and

the core conductors currents

Microwave Array with Uniform Magnetic Field 

ࢠ࡮ = ෍ ૛ି૚ࡺି࢔ࡽࢼ
࢒૛ିࡺି +෍࢔ࡽ

૛ࡺ
૛ࡺି + ෍ ࢔ࡽࢼ

࢒૛ାࡺ
≈૛ା૚ࡺ ࣊૝࢔ࡵ૙ࣆ ቈ ૚ − ࢼ ln ࢟ − ૛ࡺ ࢊ ૛ + ૛ࢠ − ln ࢟ + ૛ࡺ ࢊ ૛ + ૛ࢠ

+ ࢼ ln ࢟ − ૛ࡺ + ࢒ ࢊ ૛ + ૛ࢠ − ln ࢟ + ૛ࡺ + ࢒ ࢊ ૛ + ૛ࢠ ቉
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• Better than 95% uniformity over ~ 50%
fill factor is achieved

• Non-uniform spacing and current
excitation can be investigated

Microwave Array with Uniform Magnetic Field 
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CMOS Implementation of the Microwave Array 

• The spacing between the conductors is 2μm
• The width of the conductors is 2μm 
• The core current (I0) is 0.5mA and the boundary current (IB) is 3I0
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CMOS Implementation of the Microwave Array 

• The spacing between the conductors is 2μm
• The width of the conductors is 2μm 
• The core current (I0) is 0.5mA and the boundary current (IB) is 3I0
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Microwave Generation Circuitry

• VCO is based on a bank of coupled
ring oscillators

• Switches are added at the output of
the PLL to perform pulsed sequences
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Optical Excitation Filtering

• Optical filtering for green light
rejection

– Decreases the shot noise
– Increases the contrast
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Optical Excitation Filtering

• Previously, we implemented sub-wavelength plasmonic filter
– It is based on wavelength dependent losses
– It is implemented on M8 with measured isolation is 10 dB

• Similar filter was used for fluorescence bio-sensing
• These filters are enabled by deep sub-μm technology nodes

400 nm 400 nm

Red light (700 nm)Green light (532 nm)

M. Ibrahim, et al., VLSI 2018

L. Hong, et al., JSSC 2017
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• The grating diffraction pattern form
periodic interference patterns

• Second layer is placed at the maxima
of the green diffraction pattern

– Results in extra rejection
• Talbot effect was previously used for

angle sensitive camera
– Transmission depends on the incidence

angle at certain wavelength

Talbot Effect Based Optical Filter Concept

Slide 32

400 nm 400 nm

A. Wang, et al., ISSCC 2011

Maxima

Green light (532 nm)

FDTD Simulation Results
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• The second metal layer is placed at 
M6

• The position is aligned with the
maxima of green and minima of red

Talbot Effect Based Optical Filter Concept

400 nm 400 nm

Red light (700 nm)Green light (532 nm) Red light (700 nm)Green light (532 nm)

FDTD Simulation Results FDTD Simulation ResultsMaxima Minima
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• Gratings pitch is 800nm
• Simulated green to red rejection is 30

dB
• Measured isolation for green light is

25 dB

Three Layer Optical Filter

Red light (700 nm) Green light (532 nm)

FDTD Simulation Results
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Microwave Array and Optical Filter Co-Design 

• Measured photodiode responsivity is 180mA/W
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• Diamond is cut to enhance filtering • Photodiode area is 80µm×300µm 

Scalable Hybrid CMOS-Diamond Magnetometer 
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Outline

• Introduction
• Magnetometry Principle Using NV Centers in Diamond
• Scalable CMOS-Diamond Hybrid Magnetometer

– Uniform Microwave Array Design
– Talbot Effect-Based Optical Filter
– Complete System Integration

• Measurement Results and Real-Time Demo
• Conclusions
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Chip Micrograph

• TSMC 65nm CMOS process
• Chip area: 1mm × 1.5mm
• DC power consumption: 40mW 
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Measurement Setup

• Lock-in detection is done to reject the residual unmodulated DC green
laser background

• Differential measurement is done to cancel the laser intensity variation
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Measured ODMR at Zero External Field

• Wavelength modulated optically detected magnetic resonance (ODMR)
at zero external magnetic field is measured

• Wavelength modulation ODMR is close to the derivative of the ODMR
without wavelength modulation
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Measured ODMR at 5.4mT External Field

• Permanent DC magnet is applied 
• Bz1, Bz2, Bz3, Bz4 are the projections of Bext along the NV axes

Simulated Conceptual ODMR Curve
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Magnetic Sensitivity Measurements  

• Magnetic sensitivity is the minimum detectable magnetic field (T/ Hz)
– Noise voltage, σ = 100nV/Hz1/2, Slope, m = 15µV/MHz
– Gyromagnetic ratio, γe= 28 GHz/T

• Magnetic sensitivity, ηCW 
= σ/(γem) = 245nT/ Hz
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Real-Time Vector Field Measurements of a Magnet
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Outline

• Introduction
• Magnetometry Principle Using NV Centers in Diamond
• Scalable CMOS-Diamond Hybrid Magnetometer

– Uniform Microwave Array Design
– Talbot Effect-Based Optical Filter
– Complete System Integration

• Measurement Results and Real-Time Demo
• Conclusions



29.2: A Scalable Quantum Magnetometer in 65nm CMOS with Vector-Field Detection Capability 
© 2019 IEEE 
International Solid-State Circuits Conference 45 of 50

Summary of the Design

• Hybrid CMOS-Diamond platform for quantum magnetometry
– Combines the advantages of CMOS and NV centers in diamond
– Enables a compact sensitive magnetic field sensor

• Co-designed scalable microwave coupling structure and photonic filter
– Can be scaled to larger areas for better sensitivity
– Offers high isolation filtering on CMOS  

• Coherent control of NV ensembles
– Enables the implementation of advanced spin control sequences

• Integrated system that perform spin state coherent control and readout
– Offers closed-loop feedback between spin-manipulation and readout
– Decreases the number of IOs
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CMOS-Diamond Scalable Magnetometer 
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CMOS-Diamond Magnetometer Sensitivity Roadmap  

Coherent Spin Control
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The Future of CMOS-Diamond Magnetometer
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The Future of CMOS-Diamond Quantum Sensing

• Integrated CMOS-Diamond platforms that can be used for magnetic field 
imaging or distributed sensing 

Imaging Platform Distributed/Parallel Sensing Platform
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