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Energy-autonomous wireless tags have been adopted in authentication and
supply-chain management. At present, their size and cost, limited by packaging,
prevent the tagging for small or inexpensive industrial/medical components. At
the same time, pervasive electronic tagging raises serious privacy concerns
related to inadvertent and malicious tracking of the tagged assets. In order to
enable secure and ubiquitous asset tagging, fully passive particle-sized
cryptographic chips without external packaging are highly desired. Recent
prototypes [1-4] that aim to address this challenge face either size, energy,
communication, or security limitations. [1] demonstrates a 9mm? sensor node,
which requires a stacked packaging of multiple functionality layers for photovoltaic
powering, battery, antenna, etc. In [2], a 116x116pum? radio chip is demonstrated,
but its operating range of 1mm is limited by the near-field coupling at 5.8GHz for
power delivery and communication. Using far-field downlink/uplink at 24 and
60GHz, the package-less chip in [3] boosts the range to 50cm, but the chip size
also increases to 4.4mm? to accommodate two antennas at 24 and 60GHz.
Additionally, [1-3] do not support cryptographically secure identification. [4]
demonstrates a 0.77mm? secure authentication tag that requires an 8mm? external
antenna, but the size and the energy constraints limit it to symmetric-key
cryptography. In this paper, we present a package-less, monolithic tag chip with
built-in photovoltaic powering and a compact elliptic-curve-cryptography (ECC)
processor. Using far-field backscatter communication at 260GHz, the CMOS tag,
while integrating a 2x2 antenna array with beam-steering capability, has a size of
only 1.6mm?2,

The chip architecture of the tag is shown in Fig. 29.8.1. A 260GHz wave from the
tag reader is coupled to 2x2 tri-feed patch antennas. At each antenna, the input
260GHz power is split (~1:1) between a chain of a square-law detector and
amplifier and a passive single-sideband (SSB) mixer (Fig. 29.8.2). The former is
for downlink demodulation when the 260GHz wave is AM modulated at ~100kb/s.
The latter enables ~2kb/s uplink, for which the 260GHz wave is down-shifted by
fLo = 2MHz, AM modulated by the tag data and is then re-radiated through the
same antenna with an orthogonal polarization. Prior compact THz transceivers
[5] use the single polarization of the shared antenna for time-duplexed
transmit/receive operations. Qur approach supports simultaneous bi-directional
wave transmission and effectively reduces the interference to the uplink caused
by the direct 260GHz wave reflection from the tagged object. A chip-wide array
of photodiodes and a DC-DC converter are integrated to power the tag. The ECC
cryptographic processor is based on a narrow-strong private identification
protocol [6].

The TM,, and TMy; modes of the patch antenna can be excited by either a single-
ended feed along the side wall with a uniform electric field, or a differential feed
along the one with a half-wavelength electric field. Shown in Fig. 29.8.2, this
property is utilized for the aforementioned power splitting of the received signal
polarized in x-axis. For the uplink, the antenna differential feed (Feed1) connects
to the SSB-mixer input through a pair of 90° Lange couplers. The quadrature LO
signal of the mixer comes from a ~2MHz oscillator, which is ON/OFF controlled
by the uplink data stream. The mixer output is fed back to the antenna via a single-
ended feed (Feed2) at the same antenna edge, which then excites radiation in
y-axis. A balun allowing for only differential-mode transmission is inserted
between Feed1 and the Lange couplers, in order to prevent the common-mode
leakage of the mixer output signal to the couplers. Through phase shifting of the
2MHz LOs among the four antennas, beam-steering of the backscattered wave is
also achieved, which improves the link budget for non-perpendicular reader
positions. For the downlink, the single-ended feed (Feed3) of each antenna is
connected to a MOSFET detector biased slightly above the threshold by a
photodiode (Fig. 29.8.2). The demodulated signal is then fed to a subthreshold
amplifier (Ppe=1.5uW) to control the security processor.

The photodiodes for chip powering are based on a N+/Pwell/Deep-Nwell structure
(Fig. 29.8.3). For compactness, they are placed both beside and underneath the
antennas. Correspondingly, the patch radiator and the ground of the antenna are

implemented with a fishnet pattern (Fig. 29.8.3). With 8um hole size and spacing,
the antenna has an FDTD-simulated light transmission of 22% and a simulated
radiation efficiency of 27%. The operating output voltage (~0.3V) of the
photodiodes is converted to 1V by two switched-capacitor converters (Fig.
29.8.3). First, a start-up converter operates when the photodiode output power
is available and generates 3x up-converted voltage at Voyr. When Vpyr exceeds
0.8V, it triggers a main converter to generate the 1V output and is disconnected
from Voyr for minimum power waste. A feedback loop controlling the clock of the
main converter is used to extract maximum power from the photodiodes with a
simulated efficiency of 60%.

Figure 29.8.3 also shows the cryptographic processor, which implements a 128b
secure ECC-based private ID scheme. The scheme [6] is a 3-move protocol, where
the tag chip uses its private key and the reader public key in order to identify itself
to the valid readers. The scheme guarantees that any eavesdropper who does not
possess the reader private key cannot identify which tag participates in the
protocol by merely monitoring the wireless link. The chip has a ring-oscillator-
based true-random-number generator (RO-TRNG) with a 3.3kGE 8b
advanced-encryption-standard (AES) whitener and a compact 25kGE Curve25519
ECC hardware accelerator (ECHA) to provide the randomness and cryptographic
primitives used in the protocol. The ECHA is a very-long-instruction-word (VLIW)
machine with a 2.8kGE microcode ROM that implements the ID scheme. It
supports a dual-modulus ALU that allows arithmetic over both the base field and
the scalar field. Elliptic-curve scalar multiplication (ECSM) is implemented using
a 650k-cycle projective-coordinate Montgomery ladder that is secure against
simple power analysis. Register savings in the ECHA design and optimized ECSM
microcode results in 22% lower area and 18% lower cycle count compared to
[7]. Storing the entire ECSM state in registers allows for low voltage operation
down to 0.85V and improves the energy efficiency of the core to 14.4uJ/ECSM.

The test setup in Fig. 29.8.4 is used to communicate with the chip with two horn
antennas with orthogonal polarizations. A VDI amplifier-multiplier chain (AMC)
generates the 260GHz signal, and a spectrum analyzer extender (SAX) detects the
backscattered signal. With 5¢cm distance, the measured backscattered spectrum
and the recovered downlink data by the chip are shown in Fig. 29.8.4. Figure
29.8.5 shows the detailed protocol of the chip and the measured time-domain
waveform with an external power. First, a beacon message is sent by the tag and
then the reader starts a feedback loop to request a change of uplink beam angle
until the SNR is maximized. The measured beam patterns from the chip at two
settings requested by the reader are shown in Fig. 29.8.5. Next, the reader sends
a trigger to the chip to start the authentication process. The tag sets up keys by
utilizing the RO-TRNG with the 8b AES whitener for the randomness and then
commits them to the reader. Lastly, the tag participates in a challenge-response
protocol to identify itself to valid readers.

The chip is fabricated using a TSMC 65nm bulk CMOS process. As is shown in
Fig. 29.8.6, the chip consumes ~20pW power in its most power-hungry mode
(security mode). In Fig. 29.8.6, the 260GHz backscattering is demonstrated with
the chip fully powered by a CREE XP-L-V6 LED. A comparison with the prior work
is also provided in Fig. 29.8.6. From Fig. 29.8.6, the chip is around 3x smaller
than the smallest package-less far-field chip reported earlier [3], with additional
beam-steering functionality. The usage of public-key cryptography further makes
it suitable for privacy-sensitive applications.
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Figure 29.8.1: Schematic and basic operations of the cryptographic THzID chip
system.
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Figure 29.8.2: The design and simulated performance of the multifunctional
antenna and the THz front-end circuits.
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Figure 29.8.3: Chip-powering circuits (the antenna-integrated photodiodes and
DC-DC converter), and the cryptographic processor.
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Figure 29.8.4: Chip testing setup, the measured spectrum of the uplink signal,
and the measured downlink time-domain data.
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Figure 29.8.5: Measured time-domain communication/security protocol and = Figure 29.8.6: Chip startup and uplink operations when the chip is fully powered

beam-steering of the tag chip.

by light, power budget breakdown, and performance comparison table.
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Figure 29.8.7: Die micrograph.
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Figure 29.8.S2: DC-DC converter circuits and the measured startup behavior.

Aditional References:

[6] J. Hermans et al., “Efficient, Secure, Private Distance Bounding Without Key
Updates,” Proc. 6th ACM Conf.Security Privacy Wireless Mobile Netw., pp. 207-
218, Apr. 2013.

[7] M. Hutter et al., “NaCl's crypto_box in Hardware,” Intl. Workshop on
Cryptographic Hardware and Embedded Systems, pp. 81-101, Sept. 2015.

[8] J. Wolkerstorfer et al., "Scaling ECC Hardware to a Minimum," Cryptographic
Advances in Secure Hardware (CRASH), pp. 207-214, Sept. 2005.

[9] U. Banerijee et al., "An Energy-Efficient Reconfigurable DTLS Cryptographic
Engine for End-to-End Security in loT Applications," ISSCC, pp. 42-44, Feb. 2018.
[10] U. Banerijee et al., "An Energy-Efficient Reconfigurable DTLS Cryptographic
Engine for Securing Internet-of-Things Applications," IEEE JSSC, vol. 54, no. 8,
pp. 2339-2352, Aug. 2019.
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Figure 29.8.S1: Techniques of choosing the termination impedance at Port 2
and Port 3 to achieve certain power splitting ratio.

Figure 29.8.83: Comparison with prior-art cryptographic processors.
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