A 0.31THz CMOS Uniform Circular Antenna Array Enabling Generation/Detection of Waves with Orbital-Angular Momentum

M. I. W. Khan1, J. Woo1, X. Yi1,2, M. I. Ibrahim1, R. T. Yazicigil3, A. P. Chandrakasan1 and R. Han1

1Massachusetts Institute of Technology, Cambridge, MA, USA
2South China University of Technology, Guangzhou, China
3Boston University, Boston, MA, USA
Outline

• Introduction
• Applications and Prior Works
• 0.31THz OAM CMOS Generation/Detection
 – System architecture
 – 0.31THz Reconfigurable Pixel
 – 0.31THz Amplifier-Multiplier Chain
 – Controller and Key-to-OAM mapping
• Measurement Results
• Conclusion
Introduction

• Orbital Angular Momentum (OAM)

An OAM-based wave possesses a wavefront with a helical phase distribution around the central axis of the beam

\[|E| = A_0 J_l(k_t \rho) e\left(\frac{-\rho^2}{w_{BG}^2}\right) e(-jm\phi) e(-jkz) \]

Ref. [1]

\[m = 0, \pm 1, \pm 2, \ldots \] represents OAM modes
Applications

• Enhanced spectral efficiency
 – Orthogonal modes support spatial multiplexing/demultiplexing

400Gbps using 4-OAM modes at single wavelength

100Gbps using 5-OAM modes at 28GHz
Applications

• Physical-layer security for wireless channels
 – Require multiple phase-comparing antennas or colluding eavesdroppers

(O: Intensity Distribution Φ: Phase Distribution)
Applications

• Physical-layer security for wireless channels
 – Require multiple phase-comparing antennas or colluding eavesdroppers

Eve with two phase-comparing antennas

Unsecure area with $L_1 = L_2$, $r_1 = r_2$, $\beta = 15^\circ$
Discrete Systems for Generation/Detection of OAM

1. Spiral Phase Plate (SPP)

2. Holographic Gratings

3. Circular Antenna Array

Introduction

Applications and Prior Works

0.31THz OAM CMOS Generation/Detection
 – System architecture
 – 0.31THz Reconfigurable Pixel
 – 0.31THz Amplifier-Multiplier Chain
 – Controller and Key-to-OAM mapping

Measurement Results

Conclusion
System Architecture

RF_{IN} = 19.375\,\text{GHz}

Multiplier (X4) → Doubler1
77.5\,\text{GHz}

Balun → Doubler2
155\,\text{GHz}

310\,\text{GHz}

1-to-8 Wilkinson Divider

310\,\text{GHz} Reconfigurable Pixel

Controller
Keccak
Input Seed

Key Generation

Bits-to-mode mapping

Rx Mode Search

LO Generation

IF_{OUT,i} (i=1\cdots8)
IF Combiner

\Delta \varphi

Tx/Rx Select

0°

\varphi
System Architecture (Tx Mode)

RF_IN = 19.375 GHz

Multiplier (X4) → Doubler1

Balun → Doubler2

77.5 GHz

155 GHz

310 GHz

2Δφ

3Δφ

4Δφ

5Δφ

6Δφ

7Δφ

Δφ

0°

Tx/Rx Select

Controller

Keccak

Input Seed

Key Generation

Bits-to-mode mapping

LO Generation

1-to-8 Wilkinson Divider

310 GHz Reconfigurable Pixel

Rx Mode Search

\[\text{IF_{OUT,i}} (i=1 \ldots 8) \]

\[\text{D_{OUT}} \]
System Architecture (Rx Mode)

- RF$_{IN}$=19.375GHz
- Multiplier (X4) → Doubler1
- Balun → Doubler2
- 155GHz
- 77.5GHz

Diagram:
- 310GHz
- IF$_{OUT,i}$ (i=1...8)
- 310GHz Reconfigurable Pixel
- 4Δφ
- 5Δφ
- 6Δφ
- 7Δφ
- 2Δφ
- 3Δφ

Controller:
- Keccak
- Input Seed

Key Generation

Bits-to-mode mapping

Rx Mode Search

LO Generation

IF$_{OUT,i}$ (i=1...8)

DO$_{UT}$
310GHz Reconfigurable Pixel
310GHz Reconfigurable Pixel (Tx Mode)
310GHz Reconfigurable Pixel (Rx Mode)
310GHz Amplifier-Multiplier Chain
310GHz Amplifier-Multiplier Chain
Controller and Key-to-OAM Mapping

Keccak-f[400] Pseudo-Random Number Generation

OAM Mode Selection
0, +1, -1 or (+1)+(-1)

OAM Initial Phase Selection
0° to 315° with 45° Steps

8-Phase LO Generator (Clock Divider ÷ 4)

8-Phase LO for Each Pixel

Key-to-OAM Mapping

Φ: Phase Distribution
I: Intensity Distribution

0 0 1 0 1
1 0 1 1 1 0 1

m=0
m=1
m=-1
m=(+1)+(-1)
EM Simulation of OAM Modes

<table>
<thead>
<tr>
<th>OAM Modes</th>
<th>$m = 0$</th>
<th>$m = +1$</th>
<th>$m = -1$</th>
<th>$m = \pm 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Applications and Prior Works
- 0.31THz OAM CMOS Generation/Detection
 - System architecture
 - 0.31THz Reconfigurable Pixel
 - 0.31THz Amplifier-Multiplier Chain
 - Controller and Key-to-OAM mapping
- Measurement Results
- Conclusion
Chip Micrograph and Power Consumption

TSMC 65nm CMOS Process

Power Consumption Breakdown

Tx Mode → 154mW
Rx Mode → 166mW
Measurement Setups
Intensity Profiles and Tx Mode-checking

Measured intensity distribution for $m=+1$ and $m=(+1)+(-1)$ OAM modes

Tx OAM mode-checking
Measures spectrums when Tx chip is $m=+1$ and Rx SPP is $m=+1$ and -1.
Time-domain Tx OAM Mode-checking

Time-domain OAM mode-checking setup with 1m Tx-Rx distance

Time-domain output of the Rx configured to respond to different OAM modes, when it is illuminated by the same OAM sequence (1Mbps) generated by on-chip Keccak
Rx Mode-checking and Tx-Rx Characterization

Measured spectrum of combined IF when OAM modes are matched and unmatched

Measured Tx EIRP (m = 0) Measured Rx pixel conversion loss
CMOS Tx-Rx OAM Link

Full-silicon OAM link and sensitivity to co-axial alignment
Outline

• Introduction
• Applications and Prior Works
• 0.31THz OAM CMOS Generation/Detection
 – System architecture
 – 0.31THz Reconfigurable Pixel
 – 0.31THz Amplifier-Multiplier Chain
 – Controller and Key-to-OAM mapping
• Measurement Results
• Conclusion
Comparison with RF and mm-Wave OAM Prototypes based on Discrete Components

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discrete Transceivers + SPP + Quasi-Optical Beam Combiner</td>
<td>Active-Driven Antenna Arrays + Parabolic Reflectors</td>
<td>Active-Driven Antenna Arrays</td>
<td>Active-Driven Antenna Array on a 65nm CMOS Chip + Teflon Lens</td>
</tr>
<tr>
<td>Frequency (GHz)</td>
<td>28</td>
<td>10</td>
<td>40</td>
<td>310</td>
</tr>
<tr>
<td>OAM Modes</td>
<td>±1, ±3</td>
<td>±2, ±3</td>
<td>0, ±1, ±2, ±3</td>
<td>0, +1, -1, ±1</td>
</tr>
<tr>
<td>Data Modulation</td>
<td>16QAM/Mode Dual Polarization</td>
<td>32QAM on each mode, Full Duplex</td>
<td>256QAM/Mode Dual Polarization</td>
<td>Bit-to-Mode OAM Hopping</td>
</tr>
<tr>
<td>Radiated Power (dBm)</td>
<td>8</td>
<td>0</td>
<td>11.5</td>
<td>-4.8 (EIRP)</td>
</tr>
<tr>
<td>Antenna Aperture Diameter (cm)</td>
<td>30</td>
<td>60</td>
<td>120</td>
<td>1.35</td>
</tr>
<tr>
<td>Application</td>
<td>Enhanced Spectral Efficiency</td>
<td>Enhanced Spectral Efficiency</td>
<td>Enhanced Spectral Efficiency</td>
<td>Physical-Layer Security</td>
</tr>
<tr>
<td>DC Power (mW)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>154 (Tx), 166 (Rx)</td>
</tr>
</tbody>
</table>
Acknowledgement

• This work is supported by National Science Foundation EAGER SARE award

• Prof. Yang Yang at University of Technology, Sydney for the spiral phase plates
References

Thank you!