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Distributed, mass-deployable mm-sized nodes with communication, 
sensing, and actuation capabilities such as microbots [1] and THz 
radios [2] are the key components of future collaborative large-scale 
networks with minimum intrusion. This vision is enabled by devices 
with miniaturization, low-cost fabrication, and low power. There is, 
therefore, a growing interest in mm-sized wake-up receivers 
(WuRxs) to save the limited battery energy of those devices. The 
size of RF WuRx is determined by the antenna, which is 
fundamentally proportional to the square of the carrier wavelength 
and is typically at cm2 level in the GHz range [3]. Using higher carrier 
frequency of 78GHz, the work in [4] demonstrates the previously 
smallest RF-WuRx size of 49mm2, but at the expense of high DC 
power of 25mW. Other modalities are also adopted for size 
reduction. In [5], an ultrasonic (US) WuRx is presented with a size of 
14.5mm2, but requires an off-chip US transducer. In [6], an optical 
WuRx reduces the size to 0.85mm2 through integrated photodiodes, 
but the operation is susceptible to ambient light interference. 

This paper demonstrates the first THz WuRx that uses a 264GHz 
carrier wave to enable on-chip antenna integration and >10x size 
reduction compared to [4]. The receiver has a size of only 1.54mm2,  
-48dBm sensitivity and 2.88μW DC power at a 1.02kbps data rate. 
The utilization of highly directive and potentially steerable THz beam 
also provides improved security and spatial selectivity. The 
architecture of the WuRx is shown in Fig. 1, of which the THz 
frontend is based on a pair of dual-antenna-feed, pseudo-differential 
CMOS THz detectors, and an amplifier-filter-comparator chain. 
While prior WuRx chips use predefined tokens that can be 
eavesdropped and reused in Denial-of-Sleep attacks (a critical threat 
for mm-sized platforms due to the small battery size), this work 
implements a built-in low-power authentication block that 
randomizes tokens using a lightweight cryptographic algorithm. 

The THz receiver front end shown in Fig. 2 is pseudo-differential and 
consists of a NMOS and PMOS detector with opposite responsivity 
polarities. The MOSFETs have zero static channel current to 
eliminate power consumption and flicker noise. Meanwhile, a dual-
antenna topology, which is previously applied for energy harvesting 
[7], is adopted for low noise equivalent power (NEP) and high 
responsivity; the former sets the upper limit of the WuRx sensitivity 
and the latter relaxes the gain and noise requirements of the amplifier 
stages, thus reducing DC power. In a conventional MOSFET THz 
detector topology (Fig. 2), the drain and gate are coupled through an 
explicit or parasitic capacitor (Ce). Hence, the voltages of the two 
nodes are almost identical (vds≈vgs). However, the peak responsivity 
of 26.8kV/W occurs near ∠(vds/vgs)=170° and |vds/vgs|= 4.5, which is 
2x higher than that at vds/vgs=1. These two optimal conditions along 
with antenna-to-device matching are difficult to achieve 
simultaneously in a single-antenna, low-complexity (hence low-loss) 
topology. This is addressed in the dual-antenna topology (Fig. 2) by 
de-coupling the designs of ratioed power feeding and impedance 
matching between the gate and drain. The two patch antennas 
placed back-to-back directly provide near-180° phase difference 
between vds and vgs. Next, changing the widths of the patches (WD 
and WG) hence the corresponding antenna gains (Fig. 2) allows for 
independent adjustment of the ratio between THz power (PD/PG) 
injected into the drain and gate. With WG=200μm and WD= 600μm, 
the resultant PD/PG is 2.54, and |vds/vgs| reaches the desired value of 
4.5. The Smith chart for the matching network of the NMOS detector 
is shown in Fig. 2. The simulated NMOS detector has a responsivity 
of 13.3kV/W including matching networks losses, 4.4kV/W with 34% 
antenna efficiency, and an overall NEP of 8.2pW/Hz1/2. Similarly, the 
PMOS detector achieves a simulated responsivity of 3.4kV/W and 
NEP of 8.6pW/Hz1/2. The central AC grounds of the patch antennas 
are used for DC gate biasing and extracting the demodulated signals 
from drain nodes with no disturbance to THz operation. 

The THz frontend connects directly 
to the baseband chain (Fig. 3), 
which consists of an LNA, HPFs, 
VGAs, and a gm-C filter. The output 
noise spectrum of the baseband 
chain, the THz frontend, and their 
sum are shown in Fig. 3, with the 
passband band gain of 51dB and 
DC power of 2.64μW. Finally, the 
output is connected to a 
comparator with -30 to 30mV 
controllable offset. The WuRx can also bit-level duty cycle (BLDC) 
the amplifier-filter chain, which consumes 96% of the total power. 

The authentication block diagram is shown in Fig. 3. The token 
consists of a preamble, a counter, and an encrypted counter. With 
successful authentication, the WuRx issues the wake-up and 
updates the token using the key and counter. If the counter 
desynchronizes between Tx and WuRx, packet control logic 
resynchronizes the counter using the received token. The counter is 
encrypted by GIFT, a lightweight cipher for resource-constrained 
devices. We implement GIFT-64, which has a block size of 64 bits 
and a key size of 128 bits. The entire digital circuit occupies 11.6kGE 
and is synthesized using HVT devices to reduce leakage power. It 
consumes 33.6nW static and 65nW total measured power under the 
~10kHz clock and 0.8V power supply. Notably, this security feature 
has been added to the system while adding a few tens of nWs of 
power. The clock is generated by a 4b-tunable leakage-based 
oscillator consuming a maximum measured power of 18.5nW. 

The chip is fabricated in 65nm CMOS process and has an area of 
1.54mm2. Unlike [3-5], no external antenna or transducer is needed. 
The test setup in Fig. 4 is used to measure the performance of the 
THz detector and WuRx. The responsivity is measured at a far-field 
distance of 25cm using a lock-in amplifier and a VDI-WR3.4-VNAX, 
which radiates a -6.2dBm 264.3GHz signal through a 25dBi horn 
antenna. The noise spectral density of the THz detector is 60dB 
amplified by an ultra-low noise preamplifier and measured using a 
vector signal analyzer. The measured minimum NMOS detector NEP 
is 10.5pW/Hz1/2 at VGS=0.35V. The measured frequency selectivity 
and angle sensitivity are presented in Fig. 4. The E-plane is more 
sensitive to the H-plane because the non-zero azimuth angle 
provides an extra phase difference between two antenna outputs, 
disrupting the optimal condition. Note that angle sensitivity is not the 
radiation pattern. In addition, a sensitivity of -48dBm with 10-3 BER 
is achieved under the 2.88μW measured power and 1.02kbps data 
rate, as shown in Fig. 5. With a 20% BLDC of the amplifier-filter 
chain, a sensitivity of -47.8dBm and data rate of 86.6bps are 
obtained while reducing the average power to 748nW. Fig. 5 also 
shows the authenticated wake-up protocol scenarios and its time-
domain waveform. The wake-up was only issued when valid tokens 
were successfully received. 

Next, a wireless setup based on a VDI amplifier-multiplier chain (Pout 

=90mW) is utilized to demonstrate longer-range communication (Fig. 
5). At extended distances of 5.1m and 7.6m, the measured BERs are 
5.7×10-3 and 1.7×10-3, respectively. To relieve the requirement of 
fixed interrogator-WuRx alignment, a demo using a beam-steering 
THz reflectarray [8] at the interrogator side is carried out. Upon the 
focusing from the reflectarray, the 1o-wide 264.3GHz beam is guided 
towards different directions and is OOK modulated at 487.5Hz. The 
FFT results show that the signal is detected in different locations. 
The SNR limited by the reflectarray losses precludes complete 
recovery of the OOK signal, but the demo illustrates how distributed 
nodes is addressed through a central THz hub in the future. Fig. 6 
shows the wavelength versus the power-sensitivity product among 
WuRxs using the RF-to-THz spectrum, where the presented work 
demonstrates the smallest size and pushes the boundary of the 
design trade space with a low-cost, fully-integrated solution. A 
comparison with mm2/cm2-sized WuRxs is shown in Fig. 6. 
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Fig. 1. Application scenario of using secure THz WuRx with ultra-
miniaturized nodes and the block diagram of the proposed WuRx 
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Fig. 3. Schematic of the baseband chain and noise spectral density, 
proposed wake-up authentication flow and block schematic 
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Fig. 4. Wireless measurement setup for THz detector and WuRx at 
close distance, measured performances of THz detector 
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